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Introduction

• An intelligence reflecting surface (IRS) having a large number of tiny
passive reflectors can enable a controllable wireless propagation
environment by introducing distinct delays to the reflected electromagnetic
(EM) waves.

• These delays in turn result in controllable phase-shifts, which can be used
to intelligently reconfigure propagation properties of EM waves through the
wireless medium.

• This feature of IRSs can be utilized to improve the signal-to-noise ratio
(SNR) of an end-to-end communication between a transmitter and a
receiver by enabling constructive additions of EM waves at a desired
destination.

• Relay-assisted cooperative communications have been studied for well
over two decades due to their potential of enhancing the performance of
wireless systems

• Relaying can effectively reduce the end-to-end path-loss in terms of
shorter-hop distances and amplify-and-forward (AF) or decode-and-forward
(DF) operations at intermediate relays.
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Motivation and contribution

• The fundamental performance metrics of the IRS-relay cascaded
communication systems have not yet been investigated in the open
literature.
• Our objective is to develop an analytical framework of an IRS-assisted relay

system by deriving the performance bounds pertaining to the proposed
IRS-relay cascaded system.
• First, the end-to-end optimal SNR is probabilistically characterized by

tightly approximating it by a mathematically tractable counterpart by
invoking the central limit theorem (CLT).
• Thereby, a tight upper bound for the cumulative distribution function

(CDF) of this approximated optimal SNR is derived.
• By using this CDF, tight bounds/approximations for the average achievable

rate, SNR/rate outage probability, and average SER are derived in
closed-form.
• Then, the tightness of our performance bounds/approximations is validated

through Monte-Carlo simulations.
• Finally, a set of insightful numerical results is presented to explore the

performance gains of the proposed IRS-assisted relay system.
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System and channel model

• System model:

◦ A single-antenna source (S)
◦ A single-antenna destination (D)
◦ A single-antenna relay (R)
◦ An IRS having N reflectors

• Channel model:

◦ hIn: the channel between S and
the nth reflector of the IRS

◦ hRn : the channel between the
nth reflector and R

◦ hD: the channel betweenR andD

• The polar-form of these channels

u = βuejθu ,

where u ∈ {hIn, hRn , hD} and
n ∈ N .

IRS-aided cell-free set-up

Destination(D)

Blockage

Relay(R)

hI hR

hD

Source(S)

IRS

• βu denotes the envelop of u, and
θu is the phase of u.

• βu is assumed to be independent
Rayleigh distributed as

fβu(x) = (x/ξu) exp
(
−x2/ (2ξu)

)
,

where ξu = ζu/2 is the Rayleigh
parameter, and ζu accounts for the
large-scale fading/path-loss of the
channel u.
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Signal model

• The signal transmitted by S reaches D through the IRS-R cascaded
channel.

• The signal received at R during the first time-slot as

yR =
√
P (hR)TΘhIx+ wR,

◦ x: the transmit signal from S satisfying E
[
|x|2
]

= 1
◦ P : the transmit power at S
◦ wR ∼ CN

(
0, σ2

wR

)
:: AWGN at R

◦ hI = [hI1, · · · , hIn, · · · , hIN ]T ∈ CN×1

◦ (hR)T = [hR1 , · · · , hRn , · · · , hRN ] ∈ C1×N

◦ Θ = diag
(
η1ejθ1 , · · · , ηnejθn , · · · , ηNejθN

)
∈ CN×N : the reflective

properties of the IRS, ηnejθn , represents the complex-valued reflection
coefficient of the nth reflector of the IRS.

• By exploiting the properties of Θ, the rearranged received signal at R

yR =
√
P
∑

n∈N
hRn ηnejθnhInx+ wR.
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Signal model continued

• During the second time-slot, R first amplifies its received signal and then
forwards it towards D.
• the signal received at D can be written as

yD = GhDyR + wD =
√
PGhD

∑
n∈N

hRn ηnejθnhInx+GhDwR + wD,

where wD ∼ CN
(
0, σ2

wD

)
is an AWGN at D.

• G denotes the relay amplification factor, which is designed to constraint
the instantaneous transmit power (PR) at R

G =

√√√√PR

/(
P
∣∣∣∑

n∈N
ηnβhRn βhInejφn

∣∣∣2 + σ2
wR

)
,

where φn = θn + θhRn + θhIn .
• the received SNR at D as

γ =
P
∣∣GhD∑n∈N h

R
n ηnejθnhIn

∣∣2
|GhD|2 σ2

wR + σ2
wD

.
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Signal model continued

• This SNR in terms of the channel phases

γ =
P
∣∣GβhDejθhD

∑
n∈N ηnβhRn βhInejφn

∣∣2∣∣GβhDejθhD
∣∣2 σ2

wR + σ2
wD

.

• We maximize the received SNR at D by smartly adjusting the phase-shifts (θn)
at each reflector to enable constructive addition of the signal terms inside the
summation.

• The optimal choice of θn to maximize the received SNR

θ∗n = argmax
−π≤θn≤π

γ = −
(
θhRn + θhIn

)
, for n ∈ N .

• The optimal SNR at D

γ∗ =
P (G∗)

2
β2
hD

(∑
n∈N ηnβhRn βhIn

)2
(G∗)

2
β2
hD
σ2
wR + σ2

wD

=
γ̄Rγ̄Dβ

2
hD

(∑
n∈N ηnβhRn βhIn

)2
γ̄R
(∑

n∈N ηnβhRn βhIn
)2

+ γ̄Dβ2
hD

+ 1
,

where γ̄R=PR/σ
2
wR and γ̄D=P/σ2

wD .
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Preliminary analysis

• The optimal received SNR is probabilistically characterized by deriving a
tight approximate to its CDF.

• First, we define Z =
∑
n∈N ηnβhRn βhIn .

• By using the fact that the envelops βhRn and βhIn are independent Rayleigh
distributed random variables, Z is closely approximated by an one-sided
Gaussian distributed random variable (Z̃) by invoking the CLT

fZ(y)≈fZ̃(y)=
ψ√

2πσ2
Z

exp

(
−(y−µZ)2

2σ2
Z

)
, for y≥0.

◦ ψ , 1/Q (−µZ/σZ): normalization factor,
∫∞
−∞ fỸ (x)dx = 1

◦ µZ =
∑
n∈N πηn

(
ξhRn ξhIn

)1/2
/2

◦ σ2
Z =

∑
n∈N η

2
nξhRn ξhIn

(
16− π2

)
/4

• We define γR to be

γR = γ̄RZ
2 = γ̄R

(∑
n∈N

ηnβhRn βhIn

)2
.
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Preliminary analysis continued

• A tight approximation for the PDF of γR

fγR(x) ≈ ψ

2
√
πσ2

Rx
exp

(
−(
√
x− µR)2

2σ2
R

)
, for x ≥ 0,

where µR =
√
γ̄RµZ and σ2

R = γ̄Rσ
2
Z .

• An approximated CDF for γR

FγR(x) ≈ 1− ψQ
(
(
√
x− µR)/σR

)
, for x ≥ 0.

• Next, we define γD to be γD = γ̄Dβ
2
hD . The CDF of γD

FγD (x) = 1− exp
(
−x/σ2

D

)
, for x ≥ 0,

where σ2
D = γ̄DζhD .

• Since the exact derivation of the CDF of γ∗ appears to be mathematically
involved, we resort to an asymptotically exact upper bound

γ∗ ≈ γ̃∗ = min

(
γ̄R

(∑
n∈N

ηnβhRn βhIn

)2
, γ̄Dβ

2
hD

)
.
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Preliminary analysis continued

• By noticing that γ̃∗ = min (γR, γD), the approximated CDF of γ∗ (or the
exact CDF of γ̃∗)

Fγ∗(y) ≈ Fγ̃∗(y) = 1− (1− FγR(y)) (1− FγD (y))

= 1− ψQ ((
√
y − µR)/σR) exp

(
−y/σ2

D

)
.

0 1 2 3 4
0

0.5

1

Figure: The CDF of SNR (γ∗) for
N ∈ {64, 128, 256, 512} and γ̄ = 10 dB.

Figure illustrates that our analytical
CDF approximation is accurate for
medium-to-large numbers of reflective
elements (N) at the IRS. A relatively
larger N is practically feasible and cost
effective for IRSs, and hence, our
probabilistic characterization of the
optimal SNR is useful in deriving
performance bounds for the cascaded
IRS-relay channels.
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Average Achievable Rate

• The average achievable rate of the proposed system

R = E
[

1

2
log2 (1 + γ∗)

]
,

where the pre-log factor of 1/2 is due to the fact that half-duplex relay
mode requires two time-slots for end-to-end data transmission for the
proposed system model.

• The exact derivation of R seems mathematically intractable, and hence, a
tight upper bound by invoking the Jensen’s inequality

R ≤ Rub =
1

2
log2 (1 + E[γ∗]) ≈ 1

2
log2 (1 + E[γ̃∗]) .

• The closed-form expressions of Rub

Rub =
1

2
log2

(
1 + 2ψσ2

DQ (−µR/σR)
)
.
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The SNR/rate outage probability

• For the proposed system, the probability that the instantaneous SNR (γ)
falls below a threshold SNR (γth) is referred as the SNR outage probability.

• An approximation to this SNR outage probability

Pout = Pr (γ∗ ≤ γth) ≈ Fγ∗(γth).

• The rate outage probability can also be readily obtained as

Pout = Pr (R′ ≤ Rth) = Pr
(
γ∗ ≤ 22Rth − 1

)
≈ Fγ∗(2

2Rth − 1),

where R′ = 1
2 log2 (1 + γ∗) is the achievable rate, and Rth denotes a

threshold rate.
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The average symbol error rate (SER)

• The average SER of the proposed systems is defined as the expectation of
conditional error probability (Pe|γ∗) over the probability distribution of γ∗.
• Pe|γ∗ is given for a broad range of coherent modulation schemes by

Pe|γ∗ = ωQ
(√
ϑγ∗

)
, where the modulation scheme determines the values

of fixed parameters ω and ϑ.
• Thus, the average SER: P̄e = E

[
ωQ

(√
ϑγ∗

)]
.

• A tight approximation for P̄e can be given as

P̄e ≈
ω

2
− ω
√
ϑ

2
√

2π

∫ ∞
0

x−1/2exp

(
−ϑx

2

)
F̄γ̃∗(x)dx,

where F̄γ̃∗(x) = 1− Fγ̃∗(x) is the CCDF of γ∗.
• The closed-form solution to P̄e

P̄e ≈
ω

2
+2λQ (−µR/σR)+

λ

π
√
aσ2

R

e
−µ2R
2σ2
R

(
1− 1

2aρσ2
R

)

×
∑

i∈C∞
(−2)i

(√
aρ2σ2

R

µR

)i+1

Γ

(
i+ 1

2
,

µ2
R

2aρσ4
R

)
.
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Effects of Phase Quantization

• In practice, an IRS reflecting element only uses a set of discrete
phase-shifts due to the associated hardware limitations.
• We investigate the impact of phase-shift quantization assuming that a

limited number of discrete phase-shift is available for selection at the nth
IRS element as θ̂∗n = πq̂/2b−1,
◦ b is the number of quantization bits
◦ q̂ = argmin

q∈{0,±1,··· ,±2b−1}
|θ∗n − πq/2b−1|

◦ θ̂∗n is the optimal phase-shift

• The difference between unquantized and quantized phase-shift is defined as
the phase quantization error: εn = θ∗n − θ̂∗n.
• When the number of quantization levels increases, εn converges to a

uniform distribution as εn ∼ U [−π/2b, π/2b).
• The optimal SNR with discrete phase-shift

γ̂∗ =
γ̄Rγ̄Dβ

2
hD

(∑
n∈N ηnβhRn βhInejεn

)2
γ̄R
(∑

n∈N ηnβhRn βhInejεn
)2

+ γ̄Dβ2
hD

+ 1
.
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Simulation: Outage probability
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Figure: The outage probability for N ∈ {64, 128, 256, 512} and the threshold SNR is
γth = 0 dB. .
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Simulation: Average achievable rate
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Figure: The average achievable rate for N ∈ {64, 128, 256, 512}.
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Simulation: Average BER
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Figure: The average BER of BPSK for N ∈ {64, 128, 256, 512}, ω = 1, and ϑ = 2.
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Simulation: Phase-shift quantization
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Figure: The effect of phase shift quantization on the average achievable rate for
N ∈ {64, 128, 256, 512}.
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Conclusions

• The performance of an IRS-assisted relay system has been investigated.

• The optimal SNR that is attained through intelligent phase-shift
controlling of the IRS elements has been probabilistically characterized by
deriving a tight CDF approximation.

• Thereby, tight approximations/bounds for the fundamental performance
metrics, including the average achievable rate, SNR/rate outage
probability, and average SER have been derived.

• The impact of phase-shift errors at the IRS has been investigated by
adopting discrete phase-shift adjustments.

• The accuracy of our analysis has been validated through the Monte-Carlo
simulation.

• A rigorous set of numerical results has been presented to investigate the
performance of the proposed IRS-assisted relay system.

• From our numerical results, we reveal that the IRS-assisted relay systems
can enhance the end-to-end wireless communication performance.
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