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.
Introduction

e An intelligence reflecting surface (IRS) having a large number of tiny
passive reflectors can enable a controllable wireless propagation
environment by introducing distinct delays to the reflected electromagnetic
(EM) waves.

® These delays in turn result in controllable phase-shifts, which can be used
to intelligently reconfigure propagation properties of EM waves through the
wireless medium.

® This feature of IRSs can be utilized to improve the signal-to-noise ratio
(SNR) of an end-to-end communication between a transmitter and a
receiver by enabling constructive additions of EM waves at a desired
destination.

® Relay-assisted cooperative communications have been studied for well
over two decades due to their potential of enhancing the performance of
wireless systems

® Relaying can effectively reduce the end-to-end path-loss in terms of
shorter-hop distances and amplify-and-forward (AF) or decode-and-forward
(DF) operations at intermediate relays.
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Motivation and contribution

® The fundamental performance metrics of the IRS-relay cascaded
communication systems have not yet been investigated in the open
literature.

® Qur objective is to develop an analytical framework of an IRS-assisted relay
system by deriving the performance bounds pertaining to the proposed
IRS-relay cascaded system.

® First, the end-to-end optimal SNR is probabilistically characterized by
tightly approximating it by a mathematically tractable counterpart by
invoking the central limit theorem (CLT).

® Thereby, a tight upper bound for the cumulative distribution function
(CDF) of this approximated optimal SNR is derived.

® By using this CDF, tight bounds/approximations for the average achievable
rate, SNR/rate outage probability, and average SER are derived in
closed-form.

® Then, the tightness of our performance bounds/approximations is validated
through Monte-Carlo simulations.

® Finally, a set of insightful numerical results is presented to explore the
performance gains of the proposed IRS-assisted relay system.
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System and channel model

IRS-aided cell-free set-up

® System model:

o A single-antenna source (.5)

o A single-antenna destination (D)
o A single-antenna relay (R)

o An IRS having N reflectors

® Channel model:

Source (S)

o hl: the channel between S and

the nth reflector of the IRS ® By denotes the envelop of u, and
o h'': the channel between the 0., is the phase of u.
nth reflector and R ® 3, is assumed to be independent

o h": the channel between Rand D

Rayleigh distributed as
fo.(x) = (/&) exp (—2?/ (26u)) ,

® The polar-form of these channels

u = Buejeua
where &, = (,,/2 is the Rayleigh
where u € {hl RE KhP} and parameter, and (, accounts for the
neN. large-scale fading/path-loss of the

channel .
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:
Signal model

® The signal transmitted by S reaches D through the IRS-R cascaded
channel.

® The signal received at R during the first time-slot as
yr = VPMH)TOW 2 + wg,

x: the transmit signal from S satisfying E[|z|*] =1

P: the transmit power at S

wr ~CN (0,07,,.):: AWGN at R

h! =[pd,-- AL, RN]T e CV!

(hR)T = [hf‘,~~- JRE, - ,hﬁ] c CxN

© = diag (77167"917 ce et ,nNejoN) € CV*N: the reflective
properties of the IRS, nnejen, represents the complex-valued reflection
coefficient of the nth reflector of the IRS.

O 0O O O O O

® By exploiting the properties of ®, the rearranged received signal at R

YR = \/ane/\f h,lfnnejgn hflx + wg.
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Signal model continued

® During the second time-slot, R first amplifies its received signal and then
forwards it towards D.
® the signal received at D can be written as

yp = GhPyr +wp = VPGHP ZHEN hfnneje"hix + GhPwg + wp,
where wp ~ CN (0,02 ) is an AWGN at D.

® (G denotes the relay amplification factor, which is designed to constraint
the instantaneous transmit power (Pg) at R

2
6= e ] (I mhae k)
where ¢, = 0., + Oz + Oy .
® the received SNR at D as

P |GRhP S, cnr BEnpe?®hl |

2
IGhP[* 62 402 '
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Signal model continued

® This SNR in terms of the channel phases

P|GBpoel®P 30 s Bur e9n

12
|GBpoe?r " 02+ 02

| 2

® We maximize the received SNR at D by smartly adjusting the phase-shifts (6,,)
at each reflector to enable constructive addition of the signal terms inside the
summation.

® The optimal choice of #,, to maximize the received SNR

0 = argmax 7:—(9h§+9h£), for neN.

" —n<6,<m
® The optimal SNR at D
* 2 N 2
PG )2 825 (Xpen mBunbBnr)”  ArIDBED (Xnen MnBurBur)
= 5 = - S ’
(G¥) B}QLDU?UR + UT2UD TR (Zne/\/ nnﬁhgﬂhfl) + 'YD/B]%D +1

2
wWR

where g =Pg/o2  and yp=P/o2, .
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Preliminary analysis

® The optimal received SNR is probabilistically characterized by deriving a
tight approximate to its CDF.

® First, we define Z ="\ 7nBneBh -
® By using the fact that the envelops ;= and (),: are independent Rayleigh
distributed random variables, Z is closely approximated by an one-sided

Gaussian distributed random variable (Z) by invoking the CLT

_ _ 2
F2)~fy(y)= \/21:-76)(})( (yzagz) ) for > 0.
Z

o 1 £1/Q(—pz/oz): normalization factor, [ fo(z)dx =1

1/2
© WZ = nen Tn (ghﬁ’fhfl) /2
o oy = D onen Uifhﬁfhﬁl (16 - 7T2) /4
® We define vg to be

2
YR =7rZ® =R (ZnEN ﬁnﬂhgﬁhg)
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Preliminary analysis continued

® A tight approximation for the PDF of v

Fonl@) ~ —Yexp <(\f “R>2> for z >0,

~ 2
2\/ToRT 20%

where ur = \/Arpz and 0% = YRo%.
® An approximated CDF for vg

Fop(z)~1-vQ((Vz— pr)/or) , for z > 0.
® Next, we define vp to be vp = "yDﬂ}QLD. The CDF of vp
E,,(z) =1—exp(—x/o}), for z > 0,

where 02, = Yp(pp.
® Since the exact derivation of the CDF of v* appears to be mathematically
involved, we resort to an asymptotically exact upper bound

I T = 2 2
v~ =min | Y ZneNT)nﬂhgﬂth :ApBio | -

Diluka Loku Galappaththige (IEEE Student Member), Alan Devkota (IEEE Student Member), and Gayan Amarasuriya (IEEE Senior Member) 10



On the Performance of IRS-Assisted Relay Systems

Preliminary analysis continued

® By noticing that 4* = min (yg,yp), the approximated CDF of v* (or the
exact CDF of 3*)

F(y) =1- (1= F,(y) Q- F, 1)
= 1—-9Q((Vy—ur)/or)exp (—y/oh) .

%

Fy- (y)

Figure illustrates that our analytical
CDF approximation is accurate for
medium-to-large numbers of reflective
elements (V) at the IRS. A relatively
larger N is practically feasible and cost
effective for IRSs, and hence, our
probabilistic characterization of the
optimal SNR is useful in deriving
performance bounds for the cascaded
IRS-relay channels.

Figure: The CDF of SNR (v*) for
N € {64,128,256,512} and 5 = 10 dB.
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Average Achievable Rate

® The average achievable rate of the proposed system
1 .
RZE[2log2(1+’y )] ,

where the pre-log factor of 1/2 is due to the fact that half-duplex relay
mode requires two time-slots for end-to-end data transmission for the
proposed system model.

® The exact derivation of R seems mathematically intractable, and hence, a
tight upper bound by invoking the Jensen’s inequality

1 . 1 .
R < Rup = 5log, (1+Ely"]) ~ slog, (1+EF7)).
® The closed-form expressions of R,

1
Rup = 5logy (L4 2005Q (—pur/oR)).
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The SNR/rate outage probability

® For the proposed system, the probability that the instantaneous SNR (%)
falls below a threshold SNR (7:4) is referred as the SNR outage probability.

® An approximation to this SNR outage probability
Pout =Pr (7* < ’Vth) ~ F’y* (’7th)~
® The rate outage probability can also be readily obtained as

Pour = Pr(R'<Ry)=Pr(y* <2?%m —1)
~ F"/* (22Rth _ 1)’

where R’ = 1log, (1 +7*) is the achievable rate, and Ry, denotes a
threshold rate.
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The average symbol error rate (SER)

® The average SER of the proposed systems is defined as the expectation of
conditional error probability (F,),-) over the probability distribution of ~v*.

® P, is given for a broad range of coherent modulation schemes by
P, = wQ (v/J7%), where the modulation scheme determines the values
of fixed parameters w and ¢.

® Thus, the average SER: P, = E[wQ (v/J7)].

® A tight approximation for P, can be given as

_ 9 [ 9r\
P.~ @ WV 27 2%exp <x) Fy (x)dz,
2 2v21 Jo 2

where Fs«(z) =1 — F5- () is the CCDF of v*.
® The closed-form solution to P,

_ by PR _1 _
P =~ §+2AQ(WR/UR)+ eR( R)
™

ao'}z%
2 2\ i1 . 2
i€Co0 LR 2 2apoy )’
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Effects of Phase Quantization

® In practice, an IRS reflecting element only uses a set of discrete
phase-shifts due to the associated hardware limitations.
® We investigate the impact of phase-shift quantization assuming that a
limited number of discrete phase-shift is available for selection at the nth
IRS element as é; =7q/2b71,
o b is the number of quantization bits
o 4= argmin 07 — mq/2°7
ge{0,+1,--- , 4201}
o % is the optimal phase-shift
® The difference between unquantized and quantized phase-shift is defined as
the phase quantization error: €, = 0 — 07
® When the number of quantization levels increases, €, converges to a
uniform distribution as ¢, ~ U[-7 /2%, 7/2%).
® The optimal SNR with discrete phase-shift

A% = VR’}/D/B}QLD (ZnEN nnﬁhf}ﬁh;eﬁ")
= - S n )
TR (ZnE/\/ nnﬁhgﬂhflejen) + ’YDﬁ,ZzD +1
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Simulation: Outage probability
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Figure: The outage probability for N € {64, 128,256,512} and the threshold SNR is
Yen = 0 dB. .
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Simulation: Average achievable rate
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Figure: The average achievable rate for N € {64, 128,256, 512}.
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Simulation: Average BER

Average BER
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Figure: The average BER of BPSK for N € {64,128,256,512}, w =1, and ¢ = 2.

iluka Loku Galappaththige (IEEE Student Member), Alan Di a (IEEE Student Member), and Gayan Amarasuriya (IEEE Senior Member) 18



Simulation: Phase-shift quantization
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Figure: The effect of phase shift quantization on the average achievable rate for

N € {64,128, 256,512}.
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Conclusions

® The performance of an IRS-assisted relay system has been investigated.
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Conclusions

® The performance of an IRS-assisted relay system has been investigated.

® The optimal SNR that is attained through intelligent phase-shift
controlling of the IRS elements has been probabilistically characterized by
deriving a tight CDF approximation.
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Conclusions

® The performance of an IRS-assisted relay system has been investigated.
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deriving a tight CDF approximation.
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® The impact of phase-shift errors at the IRS has been investigated by
adopting discrete phase-shift adjustments.

® The accuracy of our analysis has been validated through the Monte-Carlo
simulation.

® A rigorous set of numerical results has been presented to investigate the
performance of the proposed IRS-assisted relay system.

® From our numerical results, we reveal that the IRS-assisted relay systems
can enhance the end-to-end wireless communication performance.
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Thank you for your attention!

Questions 77?7
alan.devkota@siu.edu
diluka.lg@siu.edu
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