



## Attacks in Neural Networks from Hardware Perspective

By: Alan Devkota

Advisor: Dr. Xin Fu

ECE 6011\_25383

February 10, 2023

Department of ECE, University of Houston Houston, TX, USA

#### **Outline**

- Overview of Neural Networks.
- Overview of attacks.
- Adversarial scenarios in cloud and edge.
- Hardware Trojan Attack on Neural Networks.
- Illustration in memory.
- Conclusion and future direction.



#### **Overview of Neural Networks**

Cloud Based ML Paradigms



### **Overview of Neural Networks**

Constrained Applications



**Security Systems** 



**Mobile Applications** 







#### **Overview of Neural Networks**

Moving inference to the edge





#### **Overview of Attacks on Neural Networks**

=







Prediction (Adversarial example)

labels: dog, cat, mango, strawberry and so on.

Solution: Adversarial training



Training Data (Poisoning)

Tay – a twitter bot developed by Microsoft seemed to learn some bad behavior on its own

Solution: Data sanitization/
Robust statistics UNIVERSITY of



**DNN Robustness** 

Prior works considered Machine Learning models as a standalone, mathematical concept.

We need to consider hardware level vulnerabilities as well.

Have we placed sound mind in a sound body??

Hardware and Infrastructure (CPUs, GPUs, FPGA, ...)









ML Frameworks (PyTorch, TensorFlow, ObJAX, ...)







Databases and Others (Cassandra, ElasticSearch, ...)





Prior works considered: Hardware attack as weak attack and software attack as strong attack. Not always

Security in Neural Network need both safe hardware and safe software UNIVERSITY of

#### **Adversarial Scenario in the Cloud**





## **Adversarial Scenario on the Edge**





## Hardware supply chain







#### Attacks in hardware domain

- > IP Piracy: Produce IPs (or secretly more copies) without approval from original owner and provide them at low cost
- > Counterfeiting: Generating a fake one. (Especially ICs)



Original



Fake



## Attacks in hardware domain (contd.)

➤ Side-channel attacks: Exploit information from computer such as electromagnetic radiation.





## Attacks in hardware domain (contd.)

Hardware trojans: Attacker attempts to maliciously modify a circuit design such that the functionality changes.

(Especially, if attacker have access to supply chain)





(a) Combinationally triggered Trojan



(b) Synchronous counter ("time-bomb") Trojan



original

Trojaned

## Illustration of DNN (In memory Representation)

Accuracy: 99%





## Illustration of DNN (In memory Representation)

Accuracy: 93.53% (5% drop)





## Illustration of DNN (In memory Representation)

Accuracy: 57.52% (41.01% drop)





### **Conclusion**

- Hardware attack can break mathematically proven guarantees.
- Stealthy form of attack.
- ➤ Other attacks on machine learning models are possible through hardware implementations.
- Single-bit flip can inflict maximum damage if it's the most significant bit. (Achilles bit)



#### References

- 1. Hong, Sanghyun, et al. "Terminal Brain Damage: Exposing the Graceless Degradation in Deep Neural Networks Under Hardware Fault Attacks." *USENIX Security Symposium*. 2019.
- 2. Clements, Joseph, and Yingjie Lao. "Hardware trojan design on neural networks." 2019 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 2019.
- 3. Clements, Joseph, and Yingjie Lao. "Hardware trojan attacks on neural networks." *arXiv preprint arXiv:1806.05768* (2018).
- 4. Hong, Sanghyun, and Maryland Cybersecurity Center MC. "A Sound Mind in A Vulnerable Body: Practical Hardware Attacks on Deep Learning."



# Thank you for your attention!

Questions ??

adevkot2@cougarnet.uh.edu

