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Overview of Neural Networks

» Cloud Based ML Paradigms
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Overview of Neural Networks

» Constrained Applications
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Overview of Neural Networks

» Moving inference to the edge
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Overview of Attacks on Neural Networks

“tabby cat” (95%) “noise” (calculated) “strawberry” (99%
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Prediction

(Adversarial example)
labels: dog, cat, mango,
strawberry and so on.

Solution: Adversarial
training
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| Tay — a twitter bot developed
g e » m by Microsoft seemed to learn
@godblessameriga WE'RE GOING TO BUILD A |some bad behavior on its own
WALL, AND MEXICO IS GOING TO PAY FOR IT
Solution: Data sanitization/
Robust statistics
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DNN Robustness

» Prior works considered Machine Learning
models as a standalone, mathematical
concept.

Have we
placed sound
mind in a
sound body??

> We need to consider hardware level
vulnerabilities as well.

—~
* Prior works considered:
Hardware attack as weak attack
and software gttack as strong
attack.

ML Frameworks (PyTorch, TensorFlow, ObJAX, ...)
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Security in Neural Network need
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Databases and Others (Cassandra, ElasticSearch, ...)

L& % % elastic

cassandra

e o

N i -

-----------------------------------------------------



Adversarial Scenario in the Cloud

inference

|Tram|ng phase:
- Poisoning attacks
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Adversarial Scenario on the Edge

| GEEKPWN AI/ROBOTICS CYBERSECURITY CONTEST .
| S— T
Cloud @ N/ EoAtoy
3rd party| designs
Feedback ) | IP \
— inference ap /
Training .I v >
() TIC A -, et
\/ - ‘\_/‘ "s(/—\ / "~Ha E!“._'!=
'\D“:f-"’;-”“'.. 2 e . ol / I g -
OO >y 2|k
o Edge Users gSuppIy Chain,
aining phase: " ‘inference phase: | Production phase: '
- Poisoning attacks I | - Adv. examples | -Hardware Trojans |
-Model inversion |, -Faultinjection ' -IP theft |
(1] LT | asn
, \ ———————————————

UNIVERSITY of

HOUSTON

CULLEN COLLEGE of ENGINEERING



Hardware supply chain

3PIP

Globalized U[ﬁ]ﬁmgt@d

Multiple Venders
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Attacks in hardware domain

» |IP Piracy: Produce IPs (or secretly more copies) without
approval from original owner and provide them at low cost

» Counterfeiting: Generating a fake one. (Especially ICs)
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Attacks in hardware domain (contd.)

» Side-channel attacks: Exploit information from computer such as
electromagnetic radiation.
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Attacks in hardware domain (contd.)
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» Hardware trojans: Attacker

attempts to maliciously modify e -

a circuit design such that the

functionality changes. T .

| Chodified

(a) Combinationally triggered Trojan

(Especially, if attacker have ER

access to supply chain)
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(b) Synchronous counter (“time-bomb”) Trojan
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lllustration of DNN (In memory Representation)

* Accuracy: 99%

...........
Conv[1,10,5x5] Conv[10,20,5x5] | FC[320,50] ' FC{50,10]
Memory (DRAM)
code weight + bias weight + bias weight + bias weight + bias
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lllustration of DNN (In memory Representation)

» Accuracy: 93.53% (5% drop)

'/'f

Conv[1, 10, 5x5]  Conv [10, 20, 5x5] FC[320,50] | FCI50, 10]
Sign  Exponent Manti i “‘\
e e e |77 ="
. -2 .
0.3504: 1.401x27=:0| 01111101 | 0110011 01101111 1101 0001 0 Memory (RAM)
0.0219:1.401x27%:0 | 0011 1001 | 011 0011 01101111 1101 0001

weight + bias
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lllustration of DNN (In memory Representation)

* Accuracy: 57.52% (41.01% drop)

Conv[1,10,5x5] Conv [10, 20, 5x5] FC[320,50] | FCI50, 10]
Sign E t Manti :
ST ="
0.3504: 1.401x 272 : 0 | 0111 1101 | 011 0011 0110 1111 1101 0001 Memory (RAM)
1.2E+38: 1.401 x 2'26: 0 | 1011 1101 | 011 0011 0110 1111 1101 0001
weight + bias
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Conclusion

Hardware attack can break mathematically proven guarantees.
Stealthy form of attack.

Other attacks on machine learning models are possible through
hardware implementations.

Single-bit flip can inflict maximum damage if it’s the most significant
bit. (Achilles bit)
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Thank you for your attention!

Questions ??
adevkot2@cougarnet.uh.edu
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