
Presented By: Alan Devkota

ECE 601

Feb 15, 2023

Department of ECE, University of Houston

Houston, TX, USA



Transformer Neural Network

Self-Attention Self-Attention

Cross-Attention

• Model: Stack of encoder/ decoder 
blocks

• Usually 3-Stage processing procedure: 
Linear transformation, Multi-head 
Attention and Feed Forward

• Key Structure: Self-attention



Self-Attention Mechanism
➢ Self-Attention can be 

understood from a graph 

perspective.

➢ Each token in the sequence 

could be regarded as a vertex.

➢ Each directed edge represents 

the attention connection from 

vertex a to b, and edge weight 

represents attention weight

➢ We can update each vertex’s 

feature by aggregating the 

information from its neighbors. 

I like ECE Seminar



Motivation

Self-Attention Cost
➢ Quadratically scaled complexity of self-attention → Bottleneck of 

executing long sequences

➢ >73% of total execution time with a sequence length of 4096, 8.65GB 

peak memory usage under 32-bit floating point operation

➢ Therefore, it is critical to reduce the cost of self-attention blocks.



Motivation
➢ Repetition of the value “0” in weight or 

activations allows elimination of 

unnecessary computations. 

➢ Although GPUs are highly optimized in 

non-sparse dense matrix multiplication, 

they may not be efficient in reaping the 

full benefits of sparse matrix 

multiplication

➢ Different layers of a neural network 

exhibit sparsity in unique ways, which 

necessitates specialized hardware due 

to variations in the computation nature.

Sparsity

I like ECE Seminar

Self-Attention have many weak connections that 
contributes very little to the final output of the feature 

aggregation!!



➢ Only very few attentions have weight value larger than 0.005

➢ Model can achieve on-par accuracy while running on pruned sparse attention graph, 

which much reduced memory and computation

Self-Attention have many weak connections that 
contributes very little to the final output of the feature 

aggregation!!

Opportunity: Dynamic Sparsity in Attention Graphs



Challenges

➢ How to locate weak attention connection?

(Compute A, Take A as a reference → compare and select only 

important ones.)

Requires computing 

the complete attention 

matrix!!



Challenges

➢ How about introducing the sparsity before Q * K’ to obtain most 

computation/ memory reduction? 

(Detect and Omit)



Challenges

➢ How about introducing the sparsity before Q * K’ to obtain most 

computation/ memory reduction? 

(Detect and Omit)

It requires some detection method!!

Should be light-weight, accurate and 

hardware-efficient (trade-off)



Hardware Challenges
➢ Should support both detection and 

execution

• Random projection

• Quantization/ dequantization

• Multi-precision computation

➢ Should support sparse attention computation

• SpMM

• SDDMM

• Sparse Softmax

However, some of the sparse operators are 
difficult to accelerate on GPU, so they have 
proposed customized architecture.



Solution: DOTA
➢ Proposed top-down Software-hardware co design

➢ On software side → Lightweight detection n/w along with optimization of 

transformer model

➢ Hardware side → Different accelerator (on top of it workload partition, token-

parallel Dataflow, and computation reordering)



DOTA: Dynamic Sparse Attention Algorithm
➢ Train a lightweight detection n/w to help detect the weak/important connection

• Low precision and low dimension

Calculate approx. attention weight using expression 

P is sparse random projection and denote approx. weights for keys and queries

Use to preserve or discard the attention scores



DOTA: Dynamic Sparse Attention Algorithm
➢ Joint optimization of detector and transformer model to ensure detection accuracy 

and final model accuracy



DOTA Accelerator Architecture



Compute Lane
➢ Reconfigurable Matrix Multiplication Unit – Multi-precision computation

➢ SRAM Buffer

➢ Multi-Function Unit – Adder tree for random projection, (De)Quantization Unit, 

Exp/Div for Softmax function

➢ Detector – Attention Detection, Hardware-level sparse computation scheduling



Reconfigurable MMU
➢ 2D PE array

➢ One PE architecture, row-wise reconfigurable precision



Token-Parallel Sparse Attention
➢ Naïve way – compute the output matrix row by row, from left to right



Token-Parallel Sparse Attention
➢ Naïve way – compute the output matrix row by row, from left to right



Token-Parallel Sparse Attention
➢ Naïve way – compute the output matrix row by row, from left to right



Token-Parallel Sparse Attention
➢ Naïve way – compute the output matrix row by row, from left to right



Token-Parallel Sparse Attention
➢ Naïve way – compute the output matrix row by row, from left to right



Token-Parallel Sparse Attention
➢ Utilize sparsity, compute output matrix in group of rows, each row from left to right



Token-Parallel Sparse Attention
➢ Utilize sparsity, compute output matrix in group of rows, each row from left to right



Token-Parallel Sparse Attention
➢ Utilize sparsity, compute output matrix in group of rows, each row from left to right



Hardware Configuration



Evaluation: Model Accuracy
➢ Comparable accuracy with dense models under 90-95% sparsity

➢ Much better accuracy-sparsity trade-off than prior art (ELSA)



Evaluation: Speedup and Latency Breakdown



Evaluation: Energy Efficiency



Conclusion

➢ Proposed way to leverage weak attention connection to reduce cost 
of self-attention mechanism

➢ Light weight detection network and joint optimization

➢ Unified hardware-software co-design

➢ Speedup, energy-efficient with negligible accuracy degradation



Thank you for your attention!
Questions ??

adevkota2@uh.edu


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

