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Input Sequence

e Key Structure: Self-attention
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Self-Attention Mechanism

> Self-Attention can be
C]l,‘
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n vertices n*nedges
0.2

understood from a graph
perspective.

» Each token in the sequence
could be regarded as a vertex.

» Each directed edge represents
the attention connection from
vertex a to b, and edge weight
represents attention weight

> We can update each vertex’s like ECE Seminar

feature by aggregating the
Information from its neighbors.
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Motivation
Self-Attention Cost

» Quadratically scaled complexity of self-attention - Bottleneck of
executing long sequences

» >73% of total execution time with a sequence length of 4096, 8.65GB
peak memory usage under 32-bit floating point operation

» Therefore, it is critical to reduce the cost of self-attention blocks.
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Motivation
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Repetition of the value “0” in weight or
activations allows elimination of
unnecessary computations.

Although GPUs are highly optimized in
non-sparse dense matrix multiplication,
they may not be efficient in reaping the
full benefits of sparse matrix
multiplication

Different layers of a neural network
exhibit sparsity in unique ways, which
necessitates specialized hardware due
to variations in the computation nature.

Self-Attention have many weak connections that
contributes very little to the final output of the feature HOUSTON

aggregation!!
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Opportunity: Dynamic Sparsity in Attention Graphs

» Only very few attentions have weight value larger than 0.005

» Model can achieve on-par accuracy while running on pruned sparse attention graph,
which much reduced memory and computation
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Self-Attention have many weak connections that
. . . UNIVERSITY of
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Challenges
» How to locate weak attention connection?

(Compute A, Take A as a reference - compare and select only
important ones.)

Dynamic Sparsity

0(n?d)

Requires computing
the complete attention

matrix!!

Compute Prune
—_—
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Challenges

» How about introducing the sparsity before Q * K’ to obtain most
computation/ memory reduction?

(Detect and Omit)

Dynamic
Sparsity

Omit
_
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Challenges

» How about introducing the sparsity before Q * K’ to obtain most
computation/ memory reduction?

(Detect and Omit)

It requires some detection method!!
Should be light-weight, accurate and
hardware-efficient (trade-off)

Attention A
Detection Softmax ]—’[ AxV

Predict
Dynamic Sparsity
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Hardware Challenges

» Should support both detection and
execution

 Random projection

* Quantization/ dequantization

S A
«  Multi-precision computation [ QxK"

> Should support sparse attention computation 0 (®*d) 0(n?) 0(n*d)
* SpMM Attention SDDMM S Sparse A
. SDDMM Detection | Softmax
Predict
« Sparse Softmax Dynamic Sparsity

However, some of the sparse operators are
difficult to accelerate on GPU, so they have

proposed customized architecture.
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Solution: DOTA

» Proposed top-down Software-hardware co design

» On software side = Lightweight detection n/w along with optimization of
transformer model

» Hardware side - Different accelerator (on top of it workload partition, token-
parallel Dataflow, and computation reordering)

Efficient and Accurate Transformer/Detection

Attention Detection Joint Optimization

Hardware Workload Token-parallel Computation
Partition Dataflow Reordering

Unified Accelerator Architecture for

Detection and Execution
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DOTA: Dynamic Sparse Attention Algorithm

» Train a lightweight detection n/w to help detect the weak/important connection

 Low precision and low dimension
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Figure 4: Weak attention detection from estimated attention
scores computed by low-rank linear transformations.

Calculate approx. attention weight using expression E — XPI/VQ(XPVVK)T

P is sparse random projection and I/VK and ﬁQ denote approx. weights for keys and queries

Use S to preserve or discard the attention scores UNIVERSITY of
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DOTA: Dynamic Sparse Attention Algorithm

» Joint optimization of detector and transformer model to ensure detection accuracy
and final model accuracy
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DOTA Accelerator Architecture
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Figure 5: DOTA system design. (a) The abstraction of a single encoder block. We divide each encoder into three sequential
stages. Each stage contains multiple GEMM operations that can be further cut into chunks (represented by different colors)
and mapped to different compute Lanes. (b) Overall system design of DOTA. Each compute Lane communicates with off-chip
DRAM for input feature. The intermediate results are summed up in the Accumulator. (c) Computation mapping between the
algorithm and hardware. Each DOTA accelerator processes one input sequence, and each Lane computes for one chunk (color).



Compute Lane

Reconfigurable Matrix Multiplication Unit — Multi-precision computation

SRAM Buffer

Multi-Function Unit — Adder tree for random projection, (De)Quantization Unit,

Exp/Div for Softmax function

Detector — Attention Detection, Hardware-level sparse computation scheduling
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Figure 6: Architecture of each compute Lane.
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Reconfigurable MMU

» 2D PE array
» One PE architecture, row-wise reconfigurable precision

RMMU RMMU

Databus
Databus
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Token-Parallel Sparse Attention

» Naive way — compute the output matrix row by row, from left to right

(Q1, K2) (Q1, K3)
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Token-Parallel Sparse Attention

» Naive way — compute the output matrix row by row, from left to right

(Q1, K2) (Q1, K3)
(Q2, K1) (Q2, K2) (Q2, K5)
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Token-Parallel Sparse Attention

» Naive way — compute the output matrix row by row, from left to right

| Row-by-Row | | 3|3
(Q1, K2) (Q1, K3)
(Q2, K1) (Q2, K2) (Q2, K5)
Q1
Q3
Q4
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Token-Parallel Sparse Attention

» Naive way — compute the output matrix row by row, from left to right

(Q1, K2)
(Q2, K1)
(Q3, K2)

(Q1, K3)
(Q2, K2)
(@3, K3)

(Q2, K5)

Q1
Q2

Q4
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(Q1, K2)
(Q2, K1)
(@3, K2)
(Q4, K1)

Token-Parallel Sparse Attention

» Naive way — compute the output matrix row by row, from left to right

(Q1, K3)
(Q2, K2)
(@3, K3)
(Q4, K3)

(Q2, K5)

(Q4, K5)

Total Memory Access:
4(Q) + 10(K) = 14 Vecs
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Token-Parallel Sparse Attention

» Utilize sparsity, compute output matrix in group of rows, each row from left to right

Token
Parallel

(Q1, k2) (Q2, k1) (@3, k2) (Q4, k1)
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Token-Parallel Sparse Attention

» Utilize sparsity, compute output matrix in group of rows, each row from left to right

Token

Parallel
(Q1, k2) (Q2, k1) (Q3, k2) (Q4, k1)
(Q1, k3) (Q2, k2) (@3, k3) (Q4, k3)
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Token-Parallel Sparse Attention

» Utilize sparsity, compute output matrix in group of rows, each row from left to right

Token Total Memory Access:
(Q1, k2) (Q2, k1) (Q3, k2) (Q4, k1)

(Q1, k3) (Q2, k2) (Q3, k3) (Q4, k3)
(Q2, k5) (Q4, k5)
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Hardware Configuration

Table 2: Configurations, Power, and Area of DOTA under
22nm Technology and 1GHz Frequency.

Hardware . 2
Module Configuration | Power(mW)|Area(mm®)
Lane 4 Lanes 2878.33 2.701
per accelerator
RMMU| 32%16 FX-16 645.98 0.609
Filter | Token Paral. = 4 9.13 0.003
Lane 16 Exp, 16 Div
MFU 1616 Adder Tree 60.73 0.060
Accumulator] 512 accu/cycle 139.21 0.045
DOTA
2TOP 17.54 2.74
(w/o SRAM) OPS 3017.5 746
SRAM 2.5MB 0.51(Leakage) 1.690
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Evaluation: Model Accuracy

» Comparable accuracy with dense models under 90-95% sparsity

» Much better accuracy-sparsity trade-off than prior art (ELSA)
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Figure 11: Model accuracy of DOTA comparing with dense baseline and ELSA under different retention ratios across the
benchmarks. The performance metric of GPT-2 is perplexity score, the lower the better. The other dataset uses accuracy, the
higher the better. The purple line indicates the best results provided by the LRA benchmark.
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Evaluation: Speedup and Latency Breakdown
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Figure 12: (a) Speedup of DOTA over GPU and ELSA on attention block. (b) End-to-end speedup over GPU. Red dots indicate the
theoretical performance upper-bound of an accelerator. (c) Normalized latency breakdown of DOTA. DOTA-F means to compute
the Full attention graph with DOTA without detection and omission. DOTA-C (Conservative) and DOTA-A (Aggressive) both
adopt attention detection, while DOTA-C allows for an accuracy degradation less than 0.5% and DOTA-A allows for 1.5%.
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Evaluation: Energy Efficiency
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Figure 13: Energy-efficiency comparisons.
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Conclusion

Proposed way to leverage weak attention connection to reduce cost
of self-attention mechanism

Light weight detection network and joint optimization
Unified hardware-software co-design

Speedup, energy-efficient with negligible accuracy degradation
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Thank you for your attention!

Questions ??
adevkota2@uh.edu
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