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Transformer Neural Network

Self-Attention Self-Attention

Cross-Attention

• Model: Stack of encoder/ decoder 
blocks

• Usually 3-Stage processing procedure: 
Linear transformation, Multi-head 
Attention and Feed Forward

• Key Structure: Self-attention



Self-Attention Mechanism
➢ Self-Attention can be 

understood from a graph 

perspective.

➢ Each token in the sequence 

could be regarded as a vertex.

➢ Each directed edge represents 

the attention connection from 

vertex a to b, and edge weight 

represents attention weight

➢ We can update each vertex’s 

feature by aggregating the 

information from its neighbors. 
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Motivation

Self-Attention Cost
➢ Quadratically scaled complexity of self-attention → Bottleneck of 

executing long sequences

➢ >73% of total execution time with a sequence length of 4096, 8.65GB 

peak memory usage under 32-bit floating point operation

➢ Therefore, it is critical to reduce the cost of self-attention blocks.



Motivation
➢ Repetition of the value “0” in weight or 

activations allows elimination of 

unnecessary computations. 

➢ Although GPUs are highly optimized in 

non-sparse dense matrix multiplication, 

they may not be efficient in reaping the 

full benefits of sparse matrix 

multiplication

➢ Different layers of a neural network 

exhibit sparsity in unique ways, which 

necessitates specialized hardware due 

to variations in the computation nature.

Sparsity
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Self-Attention have many weak connections that 
contributes very little to the final output of the feature 

aggregation!!



➢ Only very few attentions have weight value larger than 0.005

➢ Model can achieve on-par accuracy while running on pruned sparse attention graph, 

which much reduced memory and computation

Self-Attention have many weak connections that 
contributes very little to the final output of the feature 

aggregation!!

Opportunity: Dynamic Sparsity in Attention Graphs



Challenges

➢ How to locate weak attention connection?

(Compute A, Take A as a reference → compare and select only 

important ones.)

Requires computing 

the complete attention 

matrix!!



Challenges

➢ How about introducing the sparsity before Q * K’ to obtain most 

computation/ memory reduction? 

(Detect and Omit)



Challenges

➢ How about introducing the sparsity before Q * K’ to obtain most 

computation/ memory reduction? 

(Detect and Omit)

It requires some detection method!!

Should be light-weight, accurate and 

hardware-efficient (trade-off)



Hardware Challenges
➢ Should support both detection and 

execution

• Random projection

• Quantization/ dequantization

• Multi-precision computation

➢ Should support sparse attention computation

• SpMM

• SDDMM

• Sparse Softmax

However, some of the sparse operators are 
difficult to accelerate on GPU, so they have 
proposed customized architecture.



Solution: DOTA
➢ Proposed top-down Software-hardware co design

➢ On software side → Lightweight detection n/w along with optimization of 

transformer model

➢ Hardware side → Different accelerator (on top of it workload partition, token-

parallel Dataflow, and computation reordering)



DOTA: Dynamic Sparse Attention Algorithm
➢ Train a lightweight detection n/w to help detect the weak/important connection

• Low precision and low dimension

Calculate approx. attention weight using expression 

P is sparse random projection and denote approx. weights for keys and queries

Use to preserve or discard the attention scores



DOTA: Dynamic Sparse Attention Algorithm
➢ Joint optimization of detector and transformer model to ensure detection accuracy 

and final model accuracy



DOTA Accelerator Architecture



Compute Lane
➢ Reconfigurable Matrix Multiplication Unit – Multi-precision computation

➢ SRAM Buffer

➢ Multi-Function Unit – Adder tree for random projection, (De)Quantization Unit, 

Exp/Div for Softmax function

➢ Detector – Attention Detection, Hardware-level sparse computation scheduling



Reconfigurable MMU
➢ 2D PE array

➢ One PE architecture, row-wise reconfigurable precision



Token-Parallel Sparse Attention
➢ Naïve way – compute the output matrix row by row, from left to right
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Token-Parallel Sparse Attention
➢ Utilize sparsity, compute output matrix in group of rows, each row from left to right
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Token-Parallel Sparse Attention
➢ Utilize sparsity, compute output matrix in group of rows, each row from left to right



Hardware Configuration



Evaluation: Model Accuracy
➢ Comparable accuracy with dense models under 90-95% sparsity

➢ Much better accuracy-sparsity trade-off than prior art (ELSA)



Evaluation: Speedup and Latency Breakdown



Evaluation: Energy Efficiency



Conclusion

➢ Proposed way to leverage weak attention connection to reduce cost 
of self-attention mechanism

➢ Light weight detection network and joint optimization

➢ Unified hardware-software co-design

➢ Speedup, energy-efficient with negligible accuracy degradation



Thank you for your attention!
Questions ??

adevkota2@uh.edu
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