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Input Sequence

e Key Structure: Self-attention
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Figure 1: The Transformer - model architecture. H O U STO N
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Motivation
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Challenges
» How to locate weak attention connection?
(Compute A, Take A as areference = compare and select only important ones.)

» How about introducing the sparsity before Q * K’ to obtain most computation/ memory
reduction?
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DOTA: Dynamic Sparse Attention Algorithm

» Train a lightweight detection n/w to help detect the weak/important connection

 Low precision and low dimension
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Figure 4: Weak attention detection from estimated attention
scores computed by low-rank linear transformations.

Databus

RMMU

FEE-E

PE
HEEEG

HIEIENG

FEE-E

Databus

RMMU

é é ﬁ " a

Ah0-0

Reconfigurable MMU

}
H}

Reconfigurable-
MMU

Adder Tree

Attention @ Reordered
e Mask Index (LI

Detector

—_———— e

Figure 6: Architecture of each compute Lane.



DOTA Accelerator Architecture
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Figure 5: DOTA system design. (a) The abstraction of a single encoder block. We divide each encoder into three sequential
stages. Each stage contains multiple GEMM operations that can be further cut into chunks (represented by different colors)
and mapped to different compute Lanes. (b) Overall system design of DOTA. Each compute Lane communicates with off-chip
DRAM for input feature. The intermediate results are summed up in the Accumulator. (c) Computation mapping between the
algorithm and hardware. Each DOTA accelerator processes one input sequence, and each Lane computes for one chunk (color).



Evaluation: Model Accuracy

» Comparable accuracy with dense models under 90-95% sparsity

» Much better accuracy-sparsity trade-off than prior art (ELSA)
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Figure 11: Model accuracy of DOTA comparing with dense baseline and ELSA under different retention ratios across the
benchmarks. The performance metric of GPT-2 is perplexity score, the lower the better. The other dataset uses accuracy, the
higher the better. The purple line indicates the best results provided by the LRA benchmark.
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Evaluation
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Figure 12: (a) Speedup of DOTA over GPU and ELSA on attention block. (b) End-to-end speedup over GPU. Red dots indicate the
theoretical performance upper-bound of an accelerator. (¢) Normalized latency breakdown of DOTA. DOTA-F means to compute
the Full attention graph with DOTA without detection and omission. DOTA-C (Conservative) and DOTA-A (Aggressive) both
adopt attention detection, while DOTA-C allows for an accuracy degradation less than 0.5% and DOTA-A allows for 1.5%.
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Figure 13: Energy-efficiency comparisons. H O U STO N
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Conclusion

Proposed way to leverage weak attention connection to reduce cost
of self-attention mechanism

Light weight detection network and joint optimization
Unified hardware-software co-design

Speedup, energy-efficient with negligible accuracy degradation
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