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Motivation: Our experience of the world is multimodal

Humans perceive the world through
multiple modalities, enabling a holistic
understanding of their environment.

Modality refers to the way in which
information is captured or experienced.

Modalities can include various sensory
inputs like audio, vision (images and
videos), text, and even less common ones
like odors or touch.

Multimodal fusion involves integrating
information from different modalities to
create a unified representation.

For Al to match human intelligence, it's
imperative that it learns to interpret,
reason, and fuse multimodal information.
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Overview of Transformer Neural Networks

» From RNNSs to Transformers

 RNN = Recurrent Neural Network
* Widely used in Natural Language Processing (until 2017)
* Processing text sequentially, token by token.
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Overview of Transformer Neural Networks

» From RNNSs to Transformers

*  Why transformers?
* RNN sequential processing — time consuming = Transformer — parallelization
* RNN fail to obtain global information/ context = Transformers attend to every tokens
(Because x0 is very far from xn)
* RNN -single direction from left to right = Transformer both direction
e Reference window is larger in Transformers.
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A Transformer is Born

Cutput
. Probabilities
» Architecture of Transformer Neural Network
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Figure 1: The Transformer - model architecture.
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A Transformer is Born

Computer Vision Natural Lang. Proc.
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. Specifically, take a KL-constrained natural gradient step with
u t E., [Vslog ma(als)Q(s, a)] — AVeH (mp), i
where Q(3,a) = E,, [10g( Dy, (s,0)) | 80 = 3.a0 = a]
6: end for
[1] CNN image CC-BY-SA by Aphex34 for Wikipedia https://commons.wikimedia.org/wiki/File:Typical_cnn.png UNIVERSITY
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[2] RNN image CC-BY-SA by GChe for Wikipedia https://commons.wikimedia.org/wiki/File:The_LSTM_Cell.svg
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A Transformer is Born

» The Transformer’s Takeover "‘-h AN L2 AT
e | Input Tokens

Computer Vision Natural Lang. Reinf. Learning
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Attention

> At the heart of the Transformer lies the
simple attention mechanism.

Think of Dot QKT
product!!

Zyall

Goal of attention mechanism is to

take each words (tokens) as shown in

figure and create a representation
that that contains information from
the other relevant parts (other
words/ tokens).

(Creates a contextualized

representation for each input token)

Attention(Q, K, V') = softmax( \%
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Attention

The cat sat on the mat
In natural language processing:
The quick brown fox jumps over the lazy dog

A

High Attention

UNIVERSITY of

HOUSTON

CULLEN COLLEGE of ENGINEERING




Attention - Intuition

cccccccccccc hitecture

> Similar to retrieval from e B = S

T Filters

databases:

Spring 2015 - Computer Architecture Lectures - Carnegie Mellon
Carnegie Melion Computer Architecture

ion and Basics - Carnegie Mellon - Computer Architecture 2015 - Onur Mutlu - 1:54:36

* Query = a query we wish to
run on a database

Basics of Computer Architecture * 5:59
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» Key =the keys to search on'\
In the database

96 videos
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« Value = values
corresponding to each key e
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Scaled Dot-Product Attention
> Intuition — each token “searches

the database” for tokens related |_M—t1m Attention(Q, K, V) = SoftmaX(Q
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From Self-Attention to Cross-Attention

» Cross-attention is used to
gain context from another
modality/ input type

For example — gain
context from text for
Image processing

Simply extract the
gueries, keys matrix
from the other modality
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Background of Vision Transformer (ViTs)

BMinput: 2D image = input tokens/patches
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Background of Vision Transformer (ViTs)
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Examples of Cross-modal interactions

» Audio-Text
» Audio-Visual
» Vision-Language

> Video-Audio-Text
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Audio-Text

» Using the audio-text pair to learn spoken language understanding.

» In this work, the audio embeddings and text embeddings are
concatenated and fed into an autoregressive language model.

» The audio encoder used is wav2vec 2.0 and the language model is
GPT-2. r

Autoregressive Language Model
A

L] L]
£

Audio Encoder | Text Embedder Audio Encoder I Text Embedder

f » F T
..“"“||["I-IIII|||II|...... The speaker is ""“IIIII“""“"II“"“" The speaker is

describing a woman. describing a

[ Transcription ] [ Transcription ]
A woman in a red suit. A man climbs a mountain.

LN
w

Task Demonstration Test Question

OQn pmmr:t & Ans On p;ﬂlﬂr.l'l

UNIVERSITY of

WAVPROMPT model architecture. [2] cu!;lNngi:[NgEm



Audio-Visual

» Automatic speech recognition combined with lip reading.

» Lip reading is utilized to aid in automatic speech recognition tasks.

MULTIMODAL
CLUSTER IDS
CONTEXTUALIZED
AUDIO-VISUAL
REPRESENTATIONS
transformer
7 i l
I =
audio-visual fusion

MASKED
FRAME ResNet FFN

=) = > [—]

*:-' *' AT
FRAME # 1 2 3 4 5 1 2 3 4 5
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Vision-Language
Generate corresponding captions conditioned on the given image.

Features of images are extracted by CLIP encoder since CLIP is designed to
impose a shared representation for both images and text prompts.

Then, a mapping network is applied to produce prefix embeddings which are
then combined with the caption embeddings.

These are then fed to the language model.

T mrRTTITE

>

!, ;: > Mapping Prafix embeddings lGPTQ

-
CLIP Qy > Network
> Caption :okcns‘
A A A A l
- -~ J

Const. A cat is sleeping on top of a blanket on a bed.”
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Video-Audio-Text

Zero-Shot Text-to-Video Retrieval: Given a particular text query and a pool of
candidate videos, the task is to select the video that best corresponds to the text

query.

Video Action Recognition: The task is to recognize common human actions in a
video.

Audio Event Classification: The task is to recognize the respective audio events
and their temporal start and end times in a recording.
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Higher Modalities: Multimodal Token Fusion for

Vision Transformers

Residual PEs for alignment after mixing

» Proposes TokenFusion for
fusing multiple vision
transformer models handling
different modalities (e.g.,
images, point clouds).

» Dynamically detects and
prunes uninformative tokens
from each transformer. The
pruned tokens are
substituted with projected
features from other
modalities.

» This allows combining off-
the-shelf transformers

without much modification to

their original designs.

L] []

! ¥

L]

— g N\ 7 N [ |

d L :1>}"‘- - i N ]

= F S e

“ 1 )

= - o

0 5 3 - S LS g |

L-" xl_u':' ‘..__.-,Ur [§8]
—— = =

h

= s < = > o ==

E - = [ e W B X W b E

- o = e e o g

—_ S0 T —-- l1

A i5 H 2 P

— B =
S o |-- F FeeX

- e — i =

)

g [ - et o e

vy N ] Ch g L 5] '-»m

“ = —h — A |

- 1 ' l.-‘ 1

— r—:l;—w--; :--Uj 'r--

= — 2 B - B

> == GD S o (g i SO O g (1

- . Y, . J L ' — '

PEs Transformer blocks Tokens  Token fusion PEs

Model architecture. [10]

UNIVERSITY of

HOUSTON

CULLEN COLLEGE of ENGINEERING

X
=



iRl
em = emo]lsl(e,’n)ze

Homogeneous Multimodal Fusion

Homogeneous modalities
refer to multiple sources of
data that are of the same
type, such as multiple
images or multiple audio
files.

Both RGB and depth data
are sent to a shared
transformer. Overall, this
framework allows the
model to learn correlations
between the RGB and depth
data.

A pre-allocation is carried
out so the fusion process
can be of following form.

M
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Residual PEs for alignment after mixing
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Figure 1. Framework of TokenFusion for homogeneous modalities
with RGB and depth as an example. Both modalities are sent to a
shared transformer with also shared positional embeddings.
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Heterogeneous Fusion for Vision Transformers
(e.g., 3D object detection based on point cloud

N | and 2D image_
* Additional inter-modal projections (Proj) are

needed.

* Image and 3d point data are mapped to the n-th Neoint = Nimg
image patch.

0,21 = KBt e 1]+ e = [220 2] ¢ 22

 The TokenFusion method dynamically detects
uninformative tokens and substitutes them with
projected and aggregated inter-modal features.

X . Y :
[ npomt’ ynpomt’ npomt Residual PEs for alignment after mixing

1

-

3-d point data

“ - =,
[lu/z], |v/z]] gl 2 g
2 | -
2D pixel data -~ ) — g T —
= — & UNIVERSITY of
i t 0 e T T T S e N
K and Rt e .; Points P;::s Transformer blocks okens oken fusion s : H O U STO N

CULLEN COLLEGE of ENGINEERING
Figure 2. Framework of TokenFusion for heterogeneous modalities with point clouds and images. Both modalities are sent to individual

transformer modules with also individual positional embeddings. Additional inter-modal projections (Proj) are needed which is different

from the fusion for homogeneous modalities.

Camera parameters



Some other Applications

» Multi-Modal Retrieval
» Image Captioning

» Image Question Answering
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Multi-Modal Retrieval

» This model has two capabilities: image-to-text retrieval and text-to-
image retrieval.

» The former provides text from an image query, while the latter
provides an image from a text query.
Text-to-image
retrieval model

A small blve An eating
Image-to-text plane sitting area with a
5 on top of a table and a
retrieval model field. few chairs.

t Query

A row of motorcycles parked in front of a building.

[ A small blue plane sitting on top of a field.

I An ltalian dish is presented on a white plate. ]

[ Vegetables are displayed in a wooden barrel outdoors. I

Image corpus |

Text corpus
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Image-to-text and text-to-image retrieval. [7]



Image Captioning

» The image captioning model generates a corresponding description
based on a given image.

A large gray building with i
Image captioning model . : a clock tower surrounded :
)

by some trees.

Example of image captioning. [7] UNIVERSITY of

HOUSTON

CULLEN COLLEGE of ENGINEERING



Image Question Answering

» Image question answering is
Image question answering :-b-r-(;\;v-n--i
model PL ________

like image captioning. The

model answers a question
based on the image.

> The chaIIenge is to help the Example of image ' What color are the bear's feet?
model understand the queston
relationship between image answering. [8]
and text. This can be done
with large datasets of image-
text pairs.

Alt-text: A Pakistani worker helps
to clear the debris from the Taj Ma-
hal Hotel November 7, 2005 in Bal-
akot, Pakistan.

Conceptual Captions: a worker
helps to clear the debris.

Alt-text: Musician Justin Timber-
lake performs at the 2017 Pilgrim-
age Music & Cultural Festival on
September 23, 2017 in Franklin,
Tennessee.

Conceptual Captions: pop artist
A performs at the festival in a city.

L

Example of image-caption(text)
pairs. [9]

-
a very typical bus station functions of government : 1. forma  Safe deposit with money around it emergency services were called UNIVERSITY of

more perfect union on a white background photo after a car smashed through a
HOUSTON

CULLEN COLLEGE of ENGINEERING

Example of image-text pairs. [7]




Conclusion

Enhanced Information: Multimodal data provides richer information
than unimodal data, offering Al models a broader context for decision-
making.

Challenges: Training multimodal networks is complex due to issues
like data alignment and modality fusion, presenting significant
research challenges.

Performance Improvement: The integration of multiple modalities
can potentially lead to improved predictive performance in Al models.

New Possibilities: Multimodal Al unlocks capabilities that were
previously challenging for unimodal models, enabling more human-
like understanding and problem-solving.

Active Research: Multimodal deep learning is a dynamic and evolving
research area with applications spanning various domains.
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Some EM papers on Transformers

t t, t t
s{“ gf;fl
Encoder
Block -
EnCOder Bl OCK Food-fnrwlﬂl] [Feed-lomard ] [Fud-tomam } Self-Attention
o = L ' Layer
S B
Encoder Block 7 s
1 n
N S N j
Encoder Block Self-Attention Layer j
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FIGURE 2. The neural network illustration of the encoder-only transformer. The output of the transformer encoder is normally referred to as the hidden state H, but in the case
of the encoder-only transformer, H is the final output target sequence T. This Figure is based on [33].

Theta -90 -89 -60 90
Beam 0 0 ] ]

HPBW 0 0 ] 0
SLL -12 -12 -12 -12
MNL -21 -21 -21 =21 -21 -21 -21 =21 =21 =21 -21
Nulls 1] 0 1 0 0 0 0 [ 0 Q 0

(a) An example of modified far-field pattern specifications as input sequence.
Theta -90 -89 -60 -53 -52 -51 -50 -49 -48 -47 90
Power -50 -36 -50 -3 -2 -1 0 -1 -2 -3 -50

(b) An example of far-field power pattern as output sequence.

Fig. 2. An example of the modified far-field pattern specifications as the input sequence and far-field power pattern as the output sequence. In order for the
input sequence to have the same length as the output sequence, we created the table shown in (a) where the first row is the theta (#) angles of the far-field
cut. The second, third and last row are binary arrays that represent the main beam directions, HPBWs, and null positions respectively where 1 represents the
presence of the quantity and 0 represents the absence of the same quantity. The fourth and fifth row are arrays of constant values of side lobe level (SLL)
and maximum null levels (MNL).

[1]
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Some EM papers on Transformers

~.

Input: Far-field dSeqVAE ~ - FFSpec
Specifications Encode__r_ — Tokens

- dSquAE Output: Linear
- Decoder Source Array

Linear Array
Tokens

Encoder-only
Transformer

(a) The proposed neural network architecture of far-field specifications to linear source array synthesis.

~

Input: Far-field dSeqVAE FFSpec Planar Array dVAE Output: Planar [2]

Specifications Encoder Tokens Encoder-only Tokens ecoder Source Array
4 Transformer

il

(b) The proposed neural network architecture of far-field specifications to planar source array synthesis.

FIGURE 6. The proposed neural network architecture of far-field specifications to source array synthesis for both (a) 2D and (b) 3D scenarios. It should be noted that in (a) the
dSeqVAE encoder and the dSeqVAE decoder on the two sides of the transformer are of two separate models as indicated by the different colors. On the other hand, the dSeqVAE

encoders in (a) and (b) are of the same model, and are therefore shown with the same color.

Theta (deg) 0.0 1.0 59.0 60.0 61.0 179.0 180 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0
Phi (deg) 90.0 90.0 90.0 90.0 90.0 90.0 90.0 0.0 67.0 68.0 69.0 70.0 71.0 72.0 73.0 180.0
Beams 0 0 0 0 0 0 0 0 0 0 0 0 0 0
HPBW 0 0 1 1 1 0 0 0 0 1 1 1 1 1 0 0
Nulls 0 1 0 0 0 1 0 0 1 0 0 0 0 0 1 0
SLL (dB) -12.3 -12.3 -123 -12.3 -12.3 -12.3 -12.3 -13.8 -13.8 -13.8 -13.8 -13.8 -13.8 -13.8 -13.8 -13.8
MNL (dB) -21.5 -21.5 -21.5 -21.5 -215 -21.5 -21.5 -37.6 -37.6 -37.6 -376 -37.6 -37.6 -37.6 -37.6 -376

FIGURE 5. The vectorized far-field performance criteria where the first row lists the theta (¢) angles of the far-field cut. The main beam directions, HPBWs of each beam, and
null locations are represented in binary format, where 1 represents the presence and 0 represents the absence of the quantity, and are located at the second, third, and last rows

respectively. The side lobe level (SLL) and maximum null levels (MNL) are arrays of constant value and are located at the fourth and fifth rows respectively
NIVERSITY of

HOUSTON

CULLEN COLLEGE of ENGINEERING



Some EM papers on Transformers

Source array that yields

Desired far-field  _q 015~ the desired FF

specifications

specifications

® Number of beams, eg. 2 | | ...
® Beam directions, e.g. —50°, —10° SRR RRRRew
® Half Power Beam Width (HPBW), T ::> 3

e.g. 6°, 4° :
® Max side lobe level (SLL), e.g.

-12dB
® Max null level (MNL), e.g. -21dB
® Null positions, e.g —60°, —52° I35

Ste|p 2

Design a three-layered

metasurface using <«€—Step 3—— Employing andliary

. surface waves
impedance sheets
— | ol xr
H | NS
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auxiliary
apPudliary z
L
Y

-
R

FIGURE 1. The end-to-end metasurface macroscopic design pipeline utilized in this
work. The lengths and directions of the arrows in the source array image depict the
amplitude and phase of different infinitesimal dipole antennas respectively.

2]
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How attention is calculated



Vectorization

If the patches are di Xdang tensors, then the

vectors are d] didix 1.
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