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Motivation: Our experience of the world is multimodal

• Humans perceive the world through 

multiple modalities, enabling a holistic 

understanding of their environment.

• Modality refers to the way in which 

information is captured or experienced. 

• Modalities can include various sensory 

inputs like audio, vision (images and 

videos), text, and even less common ones 

like odors or touch. 

• Multimodal fusion involves integrating 

information from different modalities to 

create a unified representation. 

• For AI to match human intelligence, it's 

imperative that it learns to interpret, 

reason, and fuse multimodal information. 



➢ From RNNs to Transformers

Overview of Transformer Neural Networks

• RNN = Recurrent Neural Network
• Widely used in Natural Language Processing (until 2017)
• Processing text sequentially, token by token. 



➢ From RNNs to Transformers

Overview of Transformer Neural Networks

• Why transformers?
• RNN sequential processing – time consuming → Transformer – parallelization 
• RNN fail to obtain global information/ context → Transformers attend to every tokens

(Because x0 is very far from xn)
• RNN – single direction from left to right → Transformer both direction
• Reference window is larger in Transformers.



A Transformer is Born

➢ Architecture of Transformer Neural Network

Attention is all you Need, Vaswani et al., 
2017
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A Transformer is Born

➢ They all are single modality



A Transformer is Born

➢ The Transformer’s Takeover

Attention is all you Need, Vaswani et al., 
2017
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Attention
➢ At the heart of the Transformer lies the 

simple attention mechanism.

• Goal of attention mechanism is to 
take each words (tokens) as shown in 
figure and create a representation 
that that contains information from 
the other relevant parts (other 
words/ tokens).
(Creates a contextualized 
representation for each input token) 

Low Attention

High Attention

In natural language processing:

The quick brown fox jumps over the lazy dog

Think of Dot 
product!!



Attention - Intuition
➢ Similar to retrieval from 

databases:

• Query = a query we wish to 

run on a database

• Key = the keys to search on 

in the database

• Value = values 

corresponding to each key 

in the database

➢ Intuition – each token “searches 

the database” for tokens related 

to it.
QUERY → Q 
VALUE → V 
KEY → K



From Self-Attention to Cross-Attention
➢ Cross-attention is used to 

gain context from another 

modality/ input type

• For example –  gain 

context from text for 

image processing

• Simply extract the 

queries, keys matrix 

from the other modality

From Text

Self-Attention

From Image From Text

Cross-Attention



■Input: 2D image➔ input tokens/patches

■ Core Model: Self-Attention and
MLP

ViT Models

Input Tokens

≈

Background of Vision Transformer (ViTs)



QUERY → Q 
VALUE → V 
KEY → K

Background of Vision Transformer (ViTs)



Examples of Cross-modal interactions

➢ Audio-Text

➢ Audio-Visual

➢ Vision-Language

➢ Video-Audio-Text



Audio-Text
➢ Using the audio-text pair to learn spoken language understanding.

➢ In this work, the audio embeddings and text embeddings are 
concatenated and fed into an autoregressive language model. 

➢ The audio encoder used is wav2vec 2.0 and the language model is 
GPT-2.

WAVPROMPT model architecture. [2]



Audio-Visual
➢ Automatic speech recognition combined with lip reading.

➢ Lip reading is utilized to aid in automatic speech recognition tasks.

Audio-Visual Hidden Unit BERT (AV-HuBERT). [3]



Vision-Language
➢ Generate corresponding captions conditioned on the given image.

➢ Features of images are extracted by CLIP encoder since CLIP is designed to 
impose a shared representation for both images and text prompts.

➢ Then, a mapping network is applied to produce prefix embeddings which are 
then combined with the caption embeddings. 

➢ These are then fed to the language model.

ClipCap model architecture. [4]



Video-Audio-Text
1. Zero-Shot Text-to-Video Retrieval: Given a particular text query and a pool of 

candidate videos, the task is to select the video that best corresponds to the text 
query.

2. Video Action Recognition: The task is to recognize common human actions in a 
video.

3. Audio Event Classification: The task is to recognize the respective audio events 
and their temporal start and end times in a recording.

VATT model architecture. [5]



Higher Modalities: Multimodal Token Fusion for 
Vision Transformers

Model architecture. [10]

➢ Proposes TokenFusion for 
fusing multiple vision 
transformer models handling 
different modalities (e.g., 
images, point clouds).

➢ Dynamically detects and 
prunes uninformative tokens 
from each transformer. The 
pruned tokens are 
substituted with projected 
features from other 
modalities.

➢ This allows combining off-
the-shelf transformers 
without much modification to 
their original designs. 



Homogeneous Multimodal Fusion
• Homogeneous modalities 

refer to multiple sources of 
data that are of the same 
type, such as multiple 
images or multiple audio 
files.

• Both RGB and depth data 
are sent to a shared 
transformer. Overall, this 
framework allows the 
model to learn correlations 
between the RGB and depth 
data.

• A pre-allocation is carried 
out so the fusion process 
can be of following form.

Pre-allocation



Heterogeneous Fusion for Vision Transformers 
(e.g., 3D object detection based on point cloud 

and 2D image
• Additional inter-modal projections (Proj) are 

needed.
• Image and 3d point data are mapped to the n-th 

image patch. 

• The TokenFusion method dynamically detects 
uninformative tokens and substitutes them with 
projected and aggregated inter-modal features.

3-d point data

2D pixel data

Camera parameters



Some other Applications

➢ Multi-Modal Retrieval

➢ Image Captioning

➢ Image Question Answering



Multi-Modal Retrieval

➢ This model has two capabilities: image-to-text retrieval and text-to-
image retrieval. 

➢ The former provides text from an image query, while the latter 
provides an image from a text query.

Image-to-text and text-to-image retrieval. [7]



Image Captioning

➢ The image captioning model generates a corresponding description 
based on a given image.

Example of image captioning. [7]



Image Question Answering
➢ Image question answering is 

like image captioning. The 
model answers a question 
based on the image. 

➢ The challenge is to help the 
model understand the 
relationship between image 
and text. This can be done 
with large datasets of image-
text pairs.

Example of image-text pairs. [7]

Example of image-caption(text) 
pairs. [9]

Example of image 
question 
answering. [8]



Conclusion

➢ Enhanced Information: Multimodal data provides richer information 
than unimodal data, offering AI models a broader context for decision-
making.

➢ Challenges: Training multimodal networks is complex due to issues 
like data alignment and modality fusion, presenting significant 
research challenges.

➢ Performance Improvement: The integration of multiple modalities 
can potentially lead to improved predictive performance in AI models.

➢ New Possibilities: Multimodal AI unlocks capabilities that were 
previously challenging for unimodal models, enabling more human-
like understanding and problem-solving.

➢ Active Research: Multimodal deep learning is a dynamic and evolving 
research area with applications spanning various domains.
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Some EM papers on Transformers

[1]



Some EM papers on Transformers

[2]



Some EM papers on Transformers
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How attention is calculated



Vectorization
If the patches are 𝑑1×𝑑2×𝑑3 tensors, then the 
vectors are 𝑑1𝑑2𝑑3×1.

𝐱1 𝐱 2 𝐱3 𝐱4 𝐱5 𝐱6 𝐱7 𝐱8 𝐱9



𝐳1 = 𝐖 𝐱1 + 𝐛 𝐳2 = 𝐖 𝐱2 + 𝐛 Also, add positional encoding vectors 
to 𝐳1, 𝐳2 ,  ⋯ , 𝐳n.

Z’s are the result of 
linear transformation 
and positional 
encoding.

𝐱1 𝐱2 𝐱3 𝐱n

𝐳1 𝐳2 𝐳3 𝐳n

Dense Dense Dense Dense
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Positional Encoding:

1 2 3 𝑛
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Embed
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Dense

Multi-Head Self-Attention 

Dense

Multi-Head Self-

Attention

Transformer 

Encoder 

Network
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Share 
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Transformer Encoder Network

𝐜0

Softmax 

Classifier
𝐩



𝐜0
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CLIP encoder
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